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Abstract

Purpose – The purpose of the present paper is to describe the modeling, analysis and simulations for
the resin transfer molding (RTM), manufacturing process with particular emphasis on the sensitivity
analysis for non-isothermal applications.

Design/methodology/approach – For the manufacturing of advanced composites via RTM,
besides the tracking of the resin flow fronts through a porous fiber perform, the heat transfer and the
resin cure kinetics play an important role. The computational modeling is coupled multi-disciplinary
problem of flow-thermal-cure. The paper describes the so-called continuous sensitivity formulation via
the finite element method for this multi-disciplinary problem for process modeling of composites
manufactured by RTM to predict, analyze and optimize the manufacturing process.
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Findings – Illustrative numerical examples are presented for two sample problems which include
examination of sensitivity parameters for the case of material and geometric properties, and boundary
conditions including fill time sensitivity analysis. The results indicate that the proposed formulations
serve a useful role for the design and optimization of the RTM manufacturing process, thereby,
avoiding heuristic trial-and-error methods.

Research limitations/implications – The paper restricts attention to constant properties and
extensions to non-linear thermophysical properties will serve as an added benefit.

Practical implications – The present efforts significantly impact the design/optimization process
in the process modeling of composites manufactured by RTM.

Originality/value – To the authors’ knowledge, this is the first time that continuous sensitivity
analysis is done for non-isothermal considerations in RTM.

Keywords Composite materials, Finite element analysis, Resins

Paper type Research paper

1. Introduction
Process modeling employing resin transfer molding (RTM) to manufacture complex
structural geometries involves the injection of a polymer resin into a porous fibrous
perform conforming to the geometry of the manufactured part. The mold is normally at
a higher temperature than the resin and therefore the analysis of this process requires
accounting for both the flow and thermal-kinetic equations. The solutions of these
equations provide the flow front position, resin pressure, temperature and cure
information to the analyst. After the results from the numerical analysis are collected,
a systematic process of optimization can be performed with the assistance of the
continuous sensitivity equation (CSE), thereby, avoiding heuristic trial-and-error
methods.

Previously, the isothermal RTM CSE has been investigated by the authors
Henz et al. (2003), and others (Mathur et al., 2000). In this paper, the focus is on the
non-isothermal RTM process and the derivation of the associated CSE. Detailed
analysis of the non-isothermal process can be found in Lee et al. (1994), Kamal and
Sourour (1973a, b), Ngo et al. (1998), Ngo and Tamma (n.d.), Lim and Lee (2000)
and Shojaei et al. (2003). Derivation and analysis of the CSE for non-isothermal
considerations has not been investigated previously and is now presented here for the
first time.

Initially, an overview of the heat transfer and resin cure kinetics is given and solved
numerically. After this brief overview, the CSE for the resin flow model coupled with
the heat transfer and cure kinetics models is presented. After the numerical derivation
some illustrative numerical results are presented for two sample axi-symmetric
geometries including verification of the fill time sensitivity for a sensitivity parameter
of inlet temperature.

2. Non-isothermal resin transfer molding
In this section, the temperature and cure model equations are described for
non-isothermal RTM filling. Non-isothermal effects are an important consideration in
many manufacturing process modeling applications employing RTM. Heat is
transferred via various mechanisms of transport during the mold filling process. These
mechanisms include convection from the mold walls, advection from the fluid,
radiation to and from the mold, and heat generated by the exothermic curing process of
the resin. For non-isothermal considerations, the independent parameters include
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permeability and inlet pressure or flow rate. The dependent variables are the
conductivity, viscosity, temperature, and degree of resin cure.

The first step to developing the so-called CSE for the non-isothermal filling process
is to start with the governing model differential equations. By assuming that the fiber
and resin temperatures are at the same equilibrium temperature inside a small control
volume (Lee et al., 1994), the energy balance can be written as

rcp
›T

›t
þ rrcprðu ·7TÞ ¼ 7 · keff7T þF _G ð1Þ

where _G is the heat generated from the curing of the resin and F is the porosity of the
fibrous preform. The average material properties are computed by

rcp ¼ Frrcpr þ ð1 2FÞrfcpf

keff ¼ ks þ kD

ks ¼ Fkr þ ð1 2FÞkf

ð2Þ

where the subscripts f and r denote fiber and resin properties, respectively. The
effective conductivity, keff, is defined by Kaviany (1991). kD is the thermal dispersion
conductivity due to mechanical dissipation. The effective conductivity is computed as

keff ¼
kfkr

kfwr þ krwf
ð3Þ

where

wf ¼ 1 2 wr

wr ¼

F
rf

F
rf
þ ð12FÞ

rr

ð4Þ

Equation (1) represents the equilibrium temperature model used for developing the
finite element equations which can then be readily implemented and solved
numerically. The boundary conditions for the non-isothermal mold-filling process are
given as

T ¼ Tw at mold wall

T ¼ Tr0 during filling; at inlet

k
›T

›n
¼ ð1 2FÞrrcpru ·nðT f0 2 TÞ at resin front

ð5Þ

where Tr is the temperature of the resin, Tw is the wall temperature, and n is the
direction normal to the resin flow front. Another thermal computation required in
modeling the non-isothermal RTM filling process is cure. The curing analysis begins
with the species mass balance (Ngo et al., 1998), and is given as

F
›a

›t
þ u ·7a ¼ FRa ð6Þ

Here, a is the degree of cure, u is the velocity field, and Ra is the rate of chemical
reaction. The boundary conditions for the cure problem are given by
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a ¼ 0 during filling; at the model inletðsÞ ð7Þ

Since curing is an exothermic process, the heat generated is calculated with the
following equation (Kamal and Sourour, 1973a, c; Sourour and Kamal, 1972)

_G ¼ HRRa ð8Þ

where the term Ra for the chosen resin system is given as follows (Dusi et al., 1987)

Ra ¼ ðK1 þ K2a
n1Þð1 2 aÞn2 ð9Þ

and HR is the heat of reaction per unit volume for the pure resin. The constants K1 and
K2 are assumed as

K1 ¼ A1 exp 2
E1

RT

� �

K2 ¼ A2 exp 2
E2

RT

� � ð10Þ

where A1, A2, E1, E2, n1, and n2 are the kinetic constants determined experimentally for
each resin system used. The resin viscosity is a function of the degree of cure and
temperature. The model used for calculating the viscosity of the present resin system is
given as (Castro and Macosko, 1980)

m ¼ Am exp
Em

RT

� �
ag

ag 2 a

� �AþBa

ð11Þ

which is used in conjunction with the implicit filling technique due to Mohan et al.
(1999). This method has proven to be an effective approach for the solution of this class
of problems.

Continuing with the development of the heat transfer finite element equations, we
begin with the thermal equilibrium model in equation (1) and employ the method of
weighted residuals. Thus,Z

V

WT rcp
›T

›t
þ rrcprðu ·TÞ2 7 · k7T 2F _G

� �
dV ¼ 0 ð12Þ

Separating the terms and integrating by parts yieldsZ
V

WTrcp
›T

›t
dVþ

Z
V

WTrrcprðu ·7TÞdV2

Z
G

WTðk7T ·nÞdG

þ

Z
V

7WTk7T dV2

Z
V

WTF _G dV ¼ 0

ð13Þ

Defining the weighting functions W to be the streamline upwind Petrov-Galerkin
(SUPG) (Brooks and Hughes, 1982) weighting functions Nþ lðu ·7NÞ; and
interpolating for T yields
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W ¼ Nþ lðu ·7NÞ

T ¼
Xnum · nodes

i¼1

W iTi

ð14Þ

where i represents the associated node numbers. The heat flux, q, is defined as

k7T ·n ¼ 2q ·n ð15Þ

Substituting equations (14) and (15) into equation (13) yieldsZ
V

WrcpN dV

� �
›T

›t
þ

Z
V

Wrrcprðu ·7NÞdV

� �
Tþ

Z
V

7Wk7N dV

� �
T

¼

Z
G

Wðk7T ·nÞdGþ

Z
V

WF _G dV

ð16Þ

For the temperature analysis, the resulting semi-discretized equation is thus
obtained as

C _T þ ðKad þKcondÞT ¼ Qq þQ _G ð17Þ

where the terms in equation (17) are defined as

C ¼

Z
V

WTrcpN dV

Kad ¼

Z
V

WTrcprðu ·BN ÞdV

Kcond ¼

Z
V

BT
WkBNdV

Qq ¼

Z
G

WT ð2q ·nÞdG

Q _G ¼

Z
V

WTF _G dV

ð18Þ

where k is the effective permeability, keff, from equation (2). The time discretization for
the temperature analysis is employed, for an arbitrary u, as

_Tu ¼
Tnþ1 2 Tn

Dt
ð19Þ

The cure model equation is also solved using the finite element method. Applying the
method of weighted residuals on the species mass balance in equation (6) yieldsZ

V

WT F
›a

›t
þ u ·7a2FRa

� �
dV ¼ 0 ð20Þ

subsequently separating terms and integrating by parts yields
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Z
V

WTF
›a

›t
dVþ

Z
V

WTu ·7a dV2

Z
V

FRa dV ¼ 0 ð21Þ

As in the temperature problem, the weighting functions W are defined as the SUPG
weighting functions Nþ lðu ·7NÞ; and interpolating for a yields

W ¼ Nþ lðu ·7NÞ

a ¼
Xnum · nodes

i¼1

Wiai

ð22Þ

Rewriting equation (21) in the semi-discretized form results in

C _aþKa ¼ QRa
ð23Þ

where the terms in equation (23) are defined as

C ¼

Z
V

FWTN dV

K ¼

Z
V

WTðu ·BN ÞdV

QRa
¼

Z
V

FWTRa dV

ð24Þ

The time discretization for the cure analysis is employed, for an arbitrary u, as

_au ¼
anþ1 2 an

Dt
ð25Þ

A more detailed discussion of the non-isothermal RTM computational analysis can be
found in Ngo et al. (1998).

3. Sensitivity analysis of non-isothermal resin transfer molding
In this section the CSE for non-isothermal RTM filling, temperature, and cure are
defined. The computational procedure for the non-isothermal RTM filling problem is
described along with some illustrative results from an example axi-symmetric model.
Finally, the fill time sensitivity with respect to the inlet temperature is discussed and
verified with the use of an additional axi-symmetric example.

3.1 RTM filling sensitivity
The semi-discretized equation for mold filling is given by

KP ¼ q ð26Þ

For the non-isothermal pressure sensitivity calculation, viscosity is a function of
temperature and cure (i.e. m(T, a)). The sensitivity equation for RTM filling is given by
the following semi-discretized equation as

›K

›p
PþKSP ¼ Sq ð27Þ
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where p is the specified sensitivity parameter. Equation (27) is the same CSE as is used
in isothermal filling simulations and the derivation thereof is given in the
aforementioned isothermal references (Henz et al., 2003; Mathur et al., 2000). The
terms ›k/›p, K, and Sq from equation (27) are defined as

›K

›p
¼

V

Z
BT › �K

›p

1

m
B dVþ

V

Z
BT �K 2

1

m 2

� �
›m

›p
B dV

K ¼

V

Z
BT

�K

m
B dV

Sq ¼

G

Z
NT › �K

›p

1

m
·7P ·ndGþ

G

Z
NT �K

›

›p

1

m

� �
·7P ·ndGþ

G

Z
NT

�K

m
·7SP ·n dG

ð28Þ

In equation (28) �K is the permeability tensor of the fiber perform. With the viscosity
defined as a function of temperature and cure, this leads to an additional term in the
non-isothermal RTM filling CSE, namely ›

›p

�
1

mðT;aÞ

�
›K

›p
¼

V

Z
BT › �K

›p

1

m
B dVþ

V

Z
BT �K 2

1

m2

� �
›mðT;aÞ

›p
B dV ð29Þ

where (›m(T, a))/›p is defined as

›mðTð pÞ;að pÞ; pÞ

›p
¼

›m

›p
þ Am

ag

ag 2 a

� �AþBa

2
Em

RT 2
e

Em
RT

� �� �
›T

›p

þ Ame
Em
RT

� �
ag

ag 2 a

� �AþBa

2
Aþ Ba

ag 2 a
þ Ba ln

ag

ag 2 a

� �� �" #
›a

›p

ð30Þ

Note, that for m ¼ constant; ›m=›p ¼ 0 where m – p; it will yield the same results
as the isothermal model equation. In the non-isothermal filling simulations
the temperature profile is also computed thereby allowing for the solution of the
temperature sensitivity equations.

3.2 RTM temperature sensitivity
The temperature sensitivity is evaluated by taking the partial derivative of equation (1)
with respect to the sensitivity parameter p.

›

›p
rcp

›T

›t
þ rrcprðu ·7TÞ

� �
¼

›

›p
½7 · keff7T þF _G� ð31Þ

This results in
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›

›p
ðrcpÞ

›T

›t
þ rcp

›ST

›t
þ

›

›p
ðrcpÞðu ·7TÞ þ rrcpr

›

›p
ðu ·7TÞ

¼ 7 ·
›keff

›p
7T þ 7 · keff7ST þ

›F

›p
_GþF

› _G

›p

ð32Þ

where the temperature sensitivity is defined as, ST ; ›T=›p:
Moving all the terms in equation (32) to the left hand side and applying the method

of weighted residuals yieldsZ
V

WT ›

›p
ðrcpÞ

›T

›t
þ rcp

›ST

›t
þ

›

›p
ðrcpÞðu ·7TÞ þ rrcpr

›

›p
ðu ·7TÞ

� �
dV

2

Z
V

WT 7 ·
›keff

›p
7T þ 7 · keff7ST þ

›F

›p
_GþF

› _G

›p

� �
dV ¼ 0

ð33Þ

Before deriving the finite element equations, the partial derivative of the boundary
conditions for the temperature analysis need to be computed. For the temperature
analysis, equation (32), the boundary conditions are given as

ST ¼
›Tw

›p
at the mold wall

ST ¼
›Tr0

›p
during filling; at mold inlet

keff
›ST

›n
¼

›

›p
ðð1 2FÞrrcprðu ·nÞðTf 0 2 TÞÞ at resin flow front

ð34Þ

After applying the Green-Gauss theorem to convert the volume integral to a surface
integral, the temperature sensitivity equation is given asZ

V

WT ›

›p
ðrcpÞ

›T

›t
dVþ

Z
V

WTrcp
›ST

›t
dVþ

Z
V

WT ›

›p
ðrrcprÞðu·7TÞdV

þ

Z
V

WTrrcpr
›u

›p
·T

� �
dVþ

Z
V

WTrrcprðu·7STÞdV2

Z
G

WT ›keff

›p
7T ·n

� �
dG

þ

Z
V

7WT ·
›keff

›p
7TdV2

Z
G

7WTðkeff7ST ·nÞdGþ

Z
V

7WT ·keff7STdV

2

Z
V

WT ›F

›p
_GdV2

Z
V

WTF
› _G

›p
dV¼0

ð35Þ

where rcp is defined in equation (2), and rr and cpr are resin material properties.
Defining the weighting functions W be the SUPG weighting functions Nþ lðu ·7NÞ;
and interpolating for T and ST yields
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W ¼ Nþ lðu ·7NÞ

T ¼
Xnum · nodes

i¼1

W iTi

ST ¼
Xnum · nodes

i¼1

W iSTi

ð36Þ

Substituting equation (36) into equation (35), yields the semi-discretized finite element
equations for the temperature CSE, given as

›C

›p
_Tþ C _ST þ

›Kad

›p
þ

›Kcond

›p

� �
Tþ ðKad þKcondÞST ¼ Sq þ S _G ð37Þ

where each of the terms in equation (37) are defined as

›C

›p
¼

Z
V

WT ›

›p
ðrcpÞN dV

C ¼

Z
V

WTðrcpÞN dV

›Kad

›p
¼

Z
V

WT ›

›p
ðrcpÞðu ·BÞdVþ

Z
V

WTðrrcprÞ
›u

›p
·B

� �
dV

Kad ¼

Z
V

WTðrrcprÞðu ·BÞdV

›Kcond

›p
¼

Z
V

BT
W

›keff

›p
B dV

Kcond ¼

Z
V

BT
WkeffB dV

Sq ¼

Z
G

WT ›keff

›p
7T ·n

� �
dGþ

Z
G

WT ðkeff7ST ·nÞdG

S _Gu
¼

Z
V

WT ›F

›p
_G dVþ

Z
V

WTF
› _G

›p
dV

ð38Þ

with heat generation, _G; defined in equation (8). The time discretization is employed as

_Tu ¼
Tnþ1 2 Tn

Dt

_STu
¼

STnþ1
2 STn

Dt

ð39Þ

The fully discretized representations are thus given as

½Cþ uKDt�STnþ1
¼ 2

›C

›p
þ u

›K

›p
Dt

� �
Tnþ1 þ

›C

›p
2 ð1 2 uÞ

›K

›p
Dt

� �
Tn

þ ½C2 ð1 2 uÞKDt�STn
þ Dt ð1 2 uÞ

›Fn

›p
þ u

›Fnþ1

›p

� � ð40Þ
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with temperature T and temperature sensitivity ST approximated by

Tu ¼ ð1 2 uÞTn þ uTnþ1

STu
¼ ð1 2 uÞSTn

þ uSTnþ1

ð41Þ

and F is defined as

F ¼ Sq þ S _G ð42Þ

Some of the terms required for calculating the temperature sensitivity must still be
defined. The first of these comes from equation (3), where ›keff/›p is defined from the
following equation for sensitivity parameter p ¼ kr;

›keff

›p
¼

kf

kfwr þ krwf
2

kfkr

ðkfwr þ krwfÞ
2
wf ð43Þ

or for p ¼ kf

›keff

›p
¼

kr

kfwr þ krwf
2

kfkr

ðkfwr þ krwfÞ
2
wr ð44Þ

The heat generation term, › _G=›p is defined as

› _G

›p
¼ HR

›Ra

›p
ð45Þ

where HR is the heat of reaction per unit volume for the pure resin. The rate of reaction
term, ›Ra/›p, is defined by

›

›p
Ra ¼

›K1

›p
þ

›K2

›p
an1 þ K2n1a

n121 ›a

›p

� �
ð1 2 aÞn2

þ ðK1 þ K2a
n1Þn2ð1 2 aÞðn221Þ ›a

›p

ð46Þ

where ›k1/›p and ›k2/›p are computed by taking the partial derivative of K1 and K2 in
equation (10) with respect to the sensitivity parameter p, i.e.

›K1

›p
¼

E1A1

RT 2
e 2

E1
RT

� �
›T

›p

›K2

›p
¼

E2A2

RT 2
e 2

E2
RT

� �
›T

›p

ð47Þ

Equation (40) is used to solve for the temperature sensitivity profile for each time step
after the temperature results have been calculated.

3.3 RTM cure sensitivity
In the non-isothermal RTM analysis, cure is also computed. This leads to the following
evaluation of the cure sensitivity equation. The cure sensitivity equation is
computed by taking the partial derivative of equation (6) with respect to the
sensitivity parameter p, i.e.

HFF
15,7

640



›

›p
F
›a

›t
þ u ·7a ¼ FRa

� �
ð48Þ

which leads to

›F

›p

›a

›t
þF

Sa

›t
þ

›u

›p
·7aþ u ·7Sa ¼

›F

›p
Ra þF

›Ra

›p
ð49Þ

where the cure sensitivity is defined as Sa ; ›a=›p: Applying the method of weighted
residuals, we have

V

Z
WT ›F

›p

›a

›t
þF

Sa

›t
þ

›u

›p
·7aþ u ·7Sa 2

›F

›p
Ra 2F

›Ra

›p

� �
dV ¼ 0 ð50Þ

As in the temperature problem, the weighting functions W are defined to be the SUPG
weighting functions Nþ lðu ·7NÞ; and interpolating for a and Sa yields

W ¼ Nþ lðu ·7NÞ

a ¼
Xnum · nodes

i¼1

W iai

Sa ¼
Xnum · nodes

i¼1

W iSai

ð51Þ

The semi-discretized cure sensitivity equation is thus given as

›C

›p
_aþ C _Sa þ

›K

›p
aþKSa ¼

›QRa

›p
ð52Þ

where the terms in equation (52) are defined as

C ¼

Z
V

FWTN dV

›C

›p
¼

Z
V

›F

›p
WTN dV

K ¼

Z
V

WT ðu ·BN ÞdV

›K

›p
¼

Z
V

WT ›u

›p
·BN

� �
dV

›QRa

›p
¼

Z
V

›F

›p
WTRadVþ

Z
V

FWT ›Ra

›p
dV

ð53Þ

with the time discretization employed as

_au ¼
anþ1 2 an

Dt

_Sau
¼

Sanþ1
2 San

Dt

ð54Þ
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The boundary conditions for the cure CSE, equation (49), are computed as

›a

›p
¼ 0 during filling; at the model inletðsÞ ð55Þ

The cure sensitivity is solved numerically employing

½Cþ uKDt�Sanþ1
¼ 2

›C

›p
þ u

›K

›p
Dt

� �
anþ1 þ

›C

›p
2 ð1 2 uÞ

›K

›p
Dt

� �
an

þ ½C2 ð1 2 uÞKDt�San
þ Dt ð1 2 uÞ

›Fn

›p
þ u

›Fnþ1

›p

� � ð56Þ

with cure a and cure sensitivity Sa approximated by

au ¼ ð1 2 uÞan þ uanþ1

Sau
¼ ð1 2 uÞSan

þ uSanþ1

ð57Þ

All of the terms in equation (56) are defined in equations (24) and (53).

3.4 Computational procedure
The steps required to perform the sensitivity analysis for non-isothermal RTM process
modeling are outlined below.

(1) The filling analysis is described by the semi-discretized equation, equation (26).

(2) For non-isothermal filling analysis include the necessary temperature and cure
equations, equations (17) and (23), respectively.

(3) The CSE for the RTM filling simulation is given in semi-discretized form in
equation (27).

(4) For the non-isothermal sensitivity analysis it is also necessary to take the
partial derivative of the temperature and cure equations with respect to
the sensitivity parameter p, equations (32) and (48). This results in the
semi-discretized equations for temperature and cure sensitivity, equations (37)
and (52), respectively.

(5) In order to solve the filling equation, the boundary conditions are defined as

›P

›n
¼ 0 on mold walls

P ¼ 0 at flow front

P ¼ P0 prescribed pressure at inlet

or

q ¼ q0 prescribed flow rate at inlet

ð58Þ

(6) To solve the filling sensitivity equations the boundary conditions must be
computed by taking the partial derivatives of all filling boundary conditions
given as
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›

›p

›P

›n

� �
¼ 0 on mold walls

›P

›p
¼ 0 at flow front

›P

›p
¼

›P0

›p
for constant pressure at inlet

ð59Þ

or for constant flow at the inlet

›q

›p
¼

›q0

›p
for constant flow rate at inlet

(7) For the non-isothermal analysis the temperature and cure boundary conditions
are required, and are defined in equations (5) and (7), respectively.

(8) For temperature and cure sensitivities the thermal boundary conditions need to
be computed. The temperature sensitivity boundary conditions can be found in
equation (34), with the cure sensitivity boundary conditions defined at the inlet
as specified in equation (55).

(9) For the non-isothermal RTM sensitivity analysis, ›K=›p and Sq must be
computed and boundary conditions applied. The matrix ›K=›p requires › �K=›p
and ›m(T,a)/›p as defined in equation (30). The values in vector Sq are set to
zero except where the inlet flow rate has been defined.

(10) The temperature sensitivity analysis requires computation of five matrices and
vectors including, ›C/›p, ›Kad/›p, ›Kcond/›p, Sq and S _G: The values required
for all of these terms can be found in equation (38).

(11) Similarly, for the cure sensitivity ›C/›p, ›K/›p, and ›QRa
/›p are required and

are defined in equation (53).

(12) Once all of these equations are defined and the boundary conditions applied, the
results must be obtained. First the pressure results are computed, followed by
the pressure sensitivity results. After the filling is completed for the current
time step the thermal computations are performed. The temperature and cure
considerations are obtained first, followed by the temperature and cure
sensitivities. Note that the temperature and cure time step is normally less than
the filling time step (Ngo et al., 1998).

(13) Before continuing on to the next filling step compute the new viscosity and
viscosity sensitivity values from the thermal results and reform K and ›K/›p.

(14) Proceed to the next filling time step until the mold is completely filled. The
filling time step in the flow model is arbitrary since the implicit pure finite
element method employs the principle of time-dependent mass conservation of
the resin. This differs from the control volume-finite element approach, in that
any number of regions may be filled with resin during a given time step, instead
of just one (unless symmetry conditions exist in which case a group of elements
may be filled) as required by the quasi-steady state problem.
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3.5 Example geometry with numerical results
An axi-symmetric example geometry is shown in Figure 1. The disk is injected with
resin from inlets placed along the inside radius of the disk. By varying the inlet
boundary conditions and the material properties it is possible to show how these
variables affect the fill time or inlet pressure of the model. Observation of the results of
the sensitivity values for these variables are used to indicate the qualitative and
quantitative changes these variables produce. The results shown in Figures 2-5 are
obtained with the geometry and mesh shown in Figure 1.

Figure 2 shows plots of the fill time and the fill time sensitivity versus inlet
pressure. These results demonstrate that the fill time decreases with increasing inlet
pressure, which follows the trend observed in the analytical solution for isothermal
considerations as given by

t ¼
m

k

F

P0

R 2

2
ln

R

R0

� �
2

R 2

4
þ

R2
0

4

" #
ð60Þ

where, m is viscosity; F, porosity; k, permeability; P0, inlet pressure; R0, inner radius; R,
outer radius; t, time to fill from R0 to R Figure 3 shows the fill time and the fill time
sensitivity versus inlet flow rate. The results are as expected since the volume of the
mold remains constant; and, the fill time decreases as inlet flow rate increases. Figure 4
is a plot of pressure at the mold inlet with respect to the inlet flow rate and it shows that
inlet pressure is approximately a linear function of the inlet flow rate for the given
range of values. One may expect pressure to be a linear function of injector flow rate as
seen in Henz et al. (2003), but because of the combined temperature/cure effects on
viscosity there is a small deviation from a constant sensitivity value in Figure 4.
Figure 5 shows results unattainable from isothermal analysis. From the numerical
results it is possible to plot the fill time and the fill time sensitivity versus inlet
temperature. As expected, the fill time decreases as the inlet temperature increases
because viscosity is a function of temperature, and the viscosity decreases with
increasing temperature. Hence, from the isothermal analytical solutions one observes
that as the viscosity decreases for a constant inlet pressure, so does the mold fill time.
All of these results follow what is expected from experience and from representative
isothermal analytical solutions. The sensitivity results also follow the expected trends
for the specified boundary conditions. Although fill time may appear to be a linear
function of inlet temperature in Figure 5 it is in fact nonlinear because of the constant
pressure injection condition. The fill time with constant injection pressure is linearly

Figure 1.
Example geometry and
finite element mesh
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dependent on resin viscosity, but viscosity in non-isothermal modeling is dependent on
temperature and cure, which axe both affected by inlet temperature.

3.6 Verification of non-isothermal RTM sensitivity equations
Since there does not exist an available analytical solution for the non-isothermal filling
process, the following definition of the derivative is employed:

Dp!0
lim

tfillð pþ DpÞ2 tfillð pÞ

Dp
¼

›tfill

›p
¼ Stfill ð61Þ

Figure 2.
Non-isothermal fill time

and fill time sensitivity vs
inlet pressure plots for the

4.00 in. R disk model
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The associated error calculation is taken as

Error ¼
Dp ·Stfill

tfillð pþ DpÞ2 tfillð pÞ
2 1:0 ð62Þ

where p and Dp are the value of the sensitivity parameter and the change in the
sensitivity parameter, respectively (e.g. Tinlet). For verification purposes the error, as
defined in equation (62), should monotonically approach zero as Dp decreases. Also, the
results obtained from a Taylor series expansion, equation (63), should closely follow
the numerical results for small changes in the sensitivity parameter, or graphically
these results should be tangent to the solution of the numerical analysis obtained by
employing repeated numerical simulations.

Figure 3.
Non-isothermal fill time
and fill time sensitivity vs
inlet flow rate plots for the
4.00 in. R disk model
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The first-order Taylor series expansion is given as

wð pÞ ¼ wð p0Þ þ
›w

›p
jp0
ð p2 p0Þ þ · · · ð63Þ

where w ( p) is the numerical result and p is the sensitivity parameter. It is possible to
include higher order terms in the Taylor series expansion to increase accuracy but
the increase in computational complexity is typically not essential (Blackwell et al.,
1999a, b). The main impetus for computing the CSE is to find trends and to compare
the effects of various parameters on the physical process in question. Note that the
non-isothermal model verification in this section refers to the axi-symmetric model
shown in Figure 6, with the following parameters

Figure 4.
Non-isothermal inlet

pressure and inlet
pressure sensitivity vs

inlet flow rate plots for the
4.00 in. R disk model
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Tmold ¼ 450:008F Dt ¼ 0:01 s k ¼ 5:300 £ 1026 in:2 P0 ¼ 300:00 psi

Figure 6 is used as a proof of concept for sensitivity analysis with complex geometries.
Significant differences between the results observed here with the axi-symmetric
model and future analysis of other complex geometries is not anticipated.

Since the focus of this work is non-isothermal RTM process modeling sensitivity,
the verification is only performed here for the thermal sensitivity parameter of inlet
temperature. For the verification of the inlet temperature sensitivity parameter, the
Taylor series is used to compare the sensitivity results to the derivative of the fill time
with respect to the inlet temperature. The original Taylor series assumed for
estimating the fill time results is given as

Figure 5.
Non-isothermal fill time
and fill time sensitivity vs
inlet temperature plots for
the 4.00 in. R disk model
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tfill1 ¼ tfill0 þ
›tfill

›T inlet
·DT inlet ð64Þ

In the first-order Taylor series estimation from equation (64), the resin viscosity is not
explicitly included. The viscosity term is instead encapsulated inside the fill time
sensitivity term, ›tfill/›Tinlet in equation (64). Viscosity is a function of the temperature
profile inside of the part, which in turn is a function of the inlet temperature. This
dependence of the temperature profile on the inlet temperature gives the viscosity term
a reliance on inlet temperature which is used to define a new Taylor series dependent
on viscosity. In order to explicitly list the viscosity in the Taylor series expansion the
following modified Taylor series is used, which is based on the viscosity sensitivity.

tfill1 ¼ tfill0 þ
›tfill
›m

·Dm ð65Þ

The Dm term is computed for every filled node in the numerical model at each filling
time step. The final Dm used in the Taylor series is a weighted average of each time
step, weighted by the volume filled at the respective time step. The reason for using the
fill time sensitivity with respect to viscosity is that the fill time is a direct function of
viscosity rather than that of inlet temperature. This fact is reflected in the calculations

Figure 6.
Geometry and finite

element mesh used for
analytical/numerical

comparison
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performed and equation (66), where viscosity is the only filling parameter calculated
with the results from the thermal analysis.

tfill1 ¼ tfill0 þ
›tfill
›m

›m

›T

›T

›T inlet
·DT inlet ð66Þ

The new method described by equation (65) for estimating the fill times shows reduced
error with the modification presented when compared to the method from equation
(64), for multiple temperature ranges. The results using equations (64) and (65) are
shown graphically in Figures 7-9 for inlet temperatures of 300, 350, and 4208,
respectively. In the legends, Tinlet refers to the Taylor series initially used for the error
estimation, and viscosity and Tinlet refers to the modified Taylor series estimation. The
lines representing the viscosity based estimations more closely follow the finite
element results than the lines that represent the Taylor series estimation with inlet

Figure 7.
Comparison of the two
methods for estimating fill
time for T inlet ¼ 300:08F;
for the axi-symmetric
verification model

Figure 8.
Comparison of the two
methods for estimating fill
time for T inlet ¼ 350:08F;
for the axi-symmetric
verification model
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temperature only. It is observed that the viscosity and inlet temperature line do not
always fall below the finite element results, i.e. tangent to the results curve. For
constant injection pressure boundary conditions the mold fill time is dependent upon
the resin viscosity within the mold. The resin viscosity is in turn a function of
temperature and degree of resin cure, and therefore a function of inlet temperature.
This indirect effect of inlet temperature on mold fill time translates into the fact that
there will be some error accumulated in the results presented.

In this work, the authors have investigated the sensitivity of RTM processing
parameters such as fill time and mold temperature with respect to constant
variables including inlet pressure, flow rate, permeability, etc. There are cases when
these variables are not constants but rather complex functions dependent upon
other variables and may be non-linear. In cases such as this, the CSE can be still
utilized but requires the use of an iterative solution method for the resulting CSE. In
these instances other methods such as the automatic differentiation scheme as
discussed in Borggaard and Verna (2000) may be utilized efficiently but are by no
means required or even advisable if the CSE is already available for the current
problem.

4. Concluding remarks
In this paper, the CSE has been developed for the first time for non-isothermal
considerations in RTM process modeling. This includes the non-isothermal RTM
filling CSE, the temperature CSE, and the cure CSE. Sensitivity parameters have
been examined for the cases of material properties, boundary conditions, and
geometric parameters. Numerical results were presented for an example
axi-symmetric model and discussed. Finally, the fill time sensitivity results for
the non-isothermal RTM numerical model were validated. This was accomplished
by modifying the Taylor series initially used to estimate the fill time for small
changes in inlet temperature as given in equation (64), with the modified Taylor
series given in equation (65). The results using the modified Taylor series indicate
that the dependence of fill time on inlet temperature is not direct but rather is a side
effect of changes in viscosity.

Figure 9.
Comparison of the two

methods for estimating fill
time for T inlet ¼ 420:08F;

for the axi-symmetric
verification model
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Pelletier, D., Borggaard, J. and Hetú, J-F. (2000), “A continuous sensitivity equation method for
conduction and phase change problems”, paper presented at 38th AIAA Aerospace
Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics,
Reston, VA, Reno, NV, 10-13 January.

Stanley, L.G. (2000), “A sensitivity equation method for modeling processes”, paper presented at
IEEE International Conference on Control Applications, Institute of Electrical and
Electronics Engineers, Inc., Piscataway, NJ, Anchorage, AK, 25-27 September.

Process
modeling of
composites

653


